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Propagation of a shock wave along a broken wall can involve a complex pattern of inter- 
section of three shock waves (the incident wave, the reflected wave, and the Mach wave). 
Such a pattern is known as “irregular” or “Mach” reflection. Neumann [l] was the first 
author to investigate the combination of three coincident plane jumps (the three-jump 

theory) and to note the discrepancy between theoretical and experimental results. This 
discrepancy is especially marked in the case of weakshock waves for which the experi- 
mental values of the shock-wave angles at the triple point lie in a range where the 

three-jump problem has no solution. A major role in the establishment of this fact was 
played by Smith’s experimental findings @] which were later refined in [3 and 41. 

The discrepancy for weak Mach reflection became widely known with the appearance 
of surveys [5 and 6-J. 

Noteworthy attempts to eliminate the discrepancy between theory and experiment and 
to explain the shortcomings of the three-jump theory were made by Sternberg [7] and 
Sakurai [S]. Analyzing the boundary conditions used in three-jump interactiomsternberg 
concluded that the simple conditions of equal pressure and direction beyond the triple 
point are not valid for a real fluid of finite viscosity. Nonviscous gas theory implies 

unrestricted curving of the shock wave near the triple point, which conflicts with the 
existence of the Rankine-Hugoniot jump, Sternberg suggested that viscosiv alters the 
boundary conditions at the triple intersection and postulated the existence of a bounded 

(non-Hugo~ot) shock-wave region changes the structure of the shock wave above and 
below the triple point. Although this region is itself small, it can have a considerable 

effect on the downstream flow. 

Sakurai carried out a quantitative analysis of the boundary conditions of the three- 
jump theory and compared theoretical and experimental values of the angles. This led 
him to concIude that an essentially inhomogeneous flow zone where viscosity plays an 
important role exists beyond the triple point, and that this requires the use of the Navier- 
Stokes equations in constructing the solution. Sakurai’s solutions [8], which are the first 
approximations in the series expansions of the required functions about the triple point, 

establish a correspondence between the theoretical and experimental values of the shock- 
wave angles, but afford no clear notion of the effect of viscosity on the character of flow 
beyond the triple point. The numerical results recently obtained by Shao for the Mach 
reflection of viscous condensation jumps are also of interest. 

Experimental studies and numerical calculations show that a fairly abrupt change in 
the flow parameters occurs downstream from the triple point, and that this change OCCUIS 

in a bounded zone adjacent to the shock fronts. Such flows are called “short waves”. 
Their general theory for an ideal gas is developed in [lo]. The short-wave type equa- 
tions for a viscous gas were first derived by Ryzhov and Shefter [ll] and are simplifica- 
tions of the Navier-Stokes equations for describing tw~dimensional unsteady flows. They 
are similar to the simplifications worked out for steady transonic gas flows by Sichel l?2], 
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Ryzhov [13], and other authors. 
In the present paper we obtain a solution of the system of viscous short-wave equations 

similar to the solution of [14] which enables us to investigate the ilow downstream from 

the triple point. Mathematically, the problem reduces to the solution of a third-order 
ordinary differential equation under conditions corresponding to the boundary conditions 
of the short-wave zone. The dependence of the solution on the parameter which includes 
the viscosity and heat conduction coefficients enables us to trace the effect of dissipative 

factors on the magnitude and structure of the inhomogeneous stream region beyond the 
triple point. We investigate the solution for the limiting case of viscosity, i.e. as li -t 0. 

Arguments indicating that the solution for 1 + 0 is disctinct from the solution for I =0 

are cited. 

1, Let us derive the system of short-wave equations for a viscous heat-conducting 

gas which describe the flow structure in the neighborhood of the triple point. Our deriva- 
tion follows that of Ryzhov and Shefter [ll]. The continuity, Navier-Stokes, energy, and 
state equations in the case of two-dimensional unsteady flows can be write-n as 

ndp = aadp -b apa2dT, a2a2T = (n - 1) zp 

(l-1) 

(I.9 

(1.3) 

(1.4) 

(1.5) 

Here 5, y are orthogonal Cartesian coordinates ; t is the time; v,, ov are the compo- 

nents of the velocity vector ; p, p, T are the density, pressure, and temperature ; a is the 

velocity of sound ; a is the coefficient of thermal expansion ; n is the ratio of specific 
heats ; ql, qz, x are the coefficients of viscosity, second viscosity, and thermal conducti- 
vity. It is also convenient to introduce the coefficent of “longitudinal” viscosity n = 

= 413 q1 + w 

Let a wave propagate in the direction of the Z.-axis in an unperturbed gas with the 

parameters PO, par To, . . ., q. ; let the excess quantities in the wave be small as com- 
pared with the initial values, and let the pressure, density, temperature, and velocity-of- 
sound perturbations be of the same order of smallness as the longitudinal component u, 
of the velocity vector. 

As in the short-wave theory of an ideal gas [lo], we introduce a moving coordinate 
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system and convert to dimensionless 

-++Lx, 
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variables, 

y LY rlo r --- 
sot - e ’ t=poao”h 

II, = a,NVx, vg = a,NeVy, P = poao’ (PO 1 Poao2 + NW 

P = PO (1 + NW, T = To (1 + NO), a = a, (1 + N-4) (1.6) 

Here the dimensionless quantities’k, Y, T,VX, Yy, p’, R, 0, A are of the order of unity, 
and L, 8. A, N are small as compared with unity. 

Let us divide the coefficients of viscosity and thermal conductivity (which are of the 
same order of magnitude [15]) by qO, and the remaining coefficients by their values in 

the equilibrium state. Denoting small perturbations by primes, we can write 

?r = ?O (rl01/ 90 + 711’)1 . . ., a = a0 (1 + a’) (1.7) 

Let us substitute variables (1.6). (1.7) into system (1. l)-( 1.5) and retain only the 

leading terms in the resulting expressions. 
In the case of two-dimensional flows (N = L, E = L”?, A = L2) with slow variation 

of the wave parameters with time (3 (. _ .) / at< 1) we have quasisteadystate flows ; in 
terms of the variables 

X’= x, Y’= Jf/zY, V’X = m,Vx, v’y = 1/21/~2moVl- 

~0% 22 1 

Z’=l+(nO-l)/P ’ r 

Pp 
p=xg, ‘rl = 2ps,? 1 8(1/P)? ,s (1.8) 

we arrive at quasiselfsimilar flows described by a system of short waves (the primes are 
omitted) , moR = Vx, mo P’ = Vx, mo0 = [(no - 1) / roTo] Vx 

av, av, dl’, xx ar*, .I a?v, (1.9) 
-- - 
ax - i3Y ’ 

(IVx--S)ax -Yay + ay -- - =ib 
z 8x2 

Although the coefficients of viscosity do not appear in (1.9). their order is allowed for 
by means of the quantity A, and their ratio determines the Prandtl number P; the num- 

ber m. is the value of m in the unperturbed gas. In the case of a perfect gas (i.e. one 
which conforms to the Clapeyron equation of state) m, = l/2 (no + 1) and T plays the 
role of a parameter. 

2. In order to investigate the flow structure in the short-wave zone we introduce the 
cyclindrical coordinate system T, 8, t and the corresponding moving system 8, Y, 7. 
The velocity components and coordinates are related by the expressions 

Y = 61 Vm0M0, t =Int, Mo=N/mO 

Conversion from the variables of moving Cartesian system (1.8) to the variables of 
moving cylindrical system (2.1) by means of the equations 

c’x’ =Gu, L-Y’ = l/Y / l/Z(pY + Y), X’ -= 6 - l/,Y?, Y’ zzz f/21’ 

In ct’ = r. G = ?O [ 1 + (no - 1) / PI-l [ 2poa~2M~2m~2]-1 (6 = x f ‘/IYZ) (2.2) 

transforms svstem (1.9) into 
1 . 

av dp ap 1 av L, I t+ 
--- 
as - ay y (p--fi)i)6t.)jjF ‘~,p--ha^6”=0 (2.3) 
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Here Ir = c / t and for Ir = 0 (?I,, = 0) system (2.3) corresponds to the short-wave 

system for an ideal gas PO]. 
The first three equations of (1.9) are the integrals of the system and can be expressed 

in terms of variables (2.1) as follows : 

My--Po P -Ppo eoTo T-T,, -=-=-~ 
non PO no- 1 To (2.4) 

This means that the motion of the gas is adiabatic and (by virtue of the first equation 
of (2.3))nonvortical in our approximation. 

3. Eliminating the function Y from the equations of system (2.3). we arrive at the 
equation pa2 + (p - 6) cc,, + V?t+~ + ‘/?l$ - Q&66 = 0 (3.1) 

which the substitution p = 6 i R reduces to the form 

(R2),, + R,, + 3R, _t 1 - 2hR,,, = 0 (3.2) 

The subscripts denote partial derivatives with respect to the indicated variables. 

A transformation of the Tomotika-Tamada type [14], 

R = Z (S) - 2osY*, s=a+ar (3.3) 

reduces Eq. (3.2) to a nonlinear ordinary differential equation of the form 

- 2hZ”’ + (22)” + (20 + 3) Z’ -- 4as + 1 = 0 (3.4) 
or - hz”’ + 22” + (2’ + 20 + i)(Z’ - (J + l/z) = 0 (3.5) 

4. .We shall attempt to fmd the solution of (3.4) which in the limiting case has as its 
equivelocity line p1 = p (6, Y) the sonic, line 8 = pr, where the velocity gradients (and, 

by (2.4). the pressure, density, and temperature gradients) 

Fig. 1 

vanish, i. e. 
p (67 Y) = Pl, PLa (6, v= 0, 

py (6, Y) = 0 for 8 = pl (4.1) 

This is a necessary condition in the case of nonviscous 
flow in the neighborhood of the triple point, i.e. when the 

reflected wave degenerates into the sonic line [lS]. 
By virtue of (3.1). (3.3) conditions (4.1) are fulfilled 

for 
Z Is=~l =252y2 9 z'Is'ILI=- 1 (4.2) 

and for the values u = 0, u = - 1l2. 
The constant c in the equation 

(22)’ + (20 + 3) 2 - (4@ - 1) S + c = 0 (4.3) 

obtained by lowering the order in (3.4) assumes the values 

c = - pr, c = 0, respectively. The solutions of (4.3) which 
satisfy conditions (4.1) are of the’ form 

Z = pt - 6 for a=0 (4.4) 
Z = pr - 6 + l/2Ya for o = -1 'I2 (4.5) 

It is clear that solutions (4.4). (4.5) belong to the classes 
of special solutions of Eq. (3.5), i. e, that 

Z=- (20 + I) s + c for 0 = 0 (4.6) 

Z=(u- l/s) S + C for (5.= - ‘I2 
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and are therefore the solutions of the viscous equation. 

Further on we shall show that the physical flow pattern in the neighborhood of the tri- 
ple point is associated with the value u = 0. 

6, Let us consider the flow of a viscous gas beyond the triple shock-wave configura- 
don which arises with Mach reflection of a weak shock wave from a broken rigid wall 

(Fig. 1). 
We assume (in accordance with Sternberg’s model [7]) that the effects of viscosity and 

thermal conductivity are substantial beyond the transitional (non-Hugoniot) zone sepa- 
rating the three shock waves at which the usual conditions of passage through a shock- 
wave front are fulfilled. We shall describe the flow beyond the transition zone by means 

of the short-wave mode& requiring that the solutions satisfy the usual conditions of pas- 
sage through shock-wave fronts outside the transition region (i.e. above and below the 

triple point). Moreover, we require that the short-wave region be closed downstream by 

a bo~da~ where the gradients of all the stream parametrs vanish. 
The intensity MI and the inclination w of the incident wave A J are given in terms of, 

and determined by, the intensity and inclination w ‘, I.’ of the reflected wave and the 
Mach wave (far away from A). 

The conditions at the shock fronts for the normal and tangent velocity components in 
the variables of cylindrical system (2.1) are of the form 

M 1 p- PO 
F = -;i?, = 3&- ,~~~‘u ( (11 - p’) \I” - Y = p’ (Y, @’ + Y) 

(5.it 
IZO’=a’jJ Jfmo;Mo, %jI=-*/ I/so 

Here n’ is the velocity component behind the wave front ; a’ is the angle between the 

velocity vector behind the front and the axis +I = 0; g is the angle between the radius 
vector and the normal to the wave front. From now on we shall assume that =O = ‘/!a 

(no _1- I), that the gas is perfect, and that the wave front is described by the equation 
da 

dY = 1cI” = * l/-as - (t! + H’) (5.2) 

Beyond the incident wave front and outside the interaction zone we have a homogene- 

ous stream with the velocity pr = IIf, I M,,. The velocity (pressure) beyond the reflec- 

ted wave front decreases with distance from the triple point, and at some point k lying 
on the boundary which closes the short-wave zone we have pn L pt. At this point the 
reflected front degenerates into the sonic line 6 = p1 in accordance with (5.2) ; con- 

versely, beyond the Mach wave front the velocity (pressure) increases with decreasing 

distance from the wall (more precisely, from the outer limit of the boundary layer at the 
wall). Taking the value of M at the base of the Mach stem as our MS , we obtain PO= i. 

Let us find the coordinates of the points R, A, M and determine the flow conditions. 
Introducing the complements a, p, y of the angles o , o , h’ and substituting the values 
of g into expression (5.2). we obtain the equations of the rays A J, AH, AM , 

Writing out expressions (5.3) for the point A, we obtain 

X, = ‘/a i- ‘/ar02, pr I=: cl02 - PO’, EL1 = f - (202 _ r”Z) (5.;) 
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We define the coordinates of the point R as the coordinates of the point where the ray 

AKistangenttothearcd= pl. B ==_~ _B’2 
7 Y, =p”, -@Jr = Pl) cJ.fi) 

We obtain the coordinates of the gint &from the condition under which the base of 
the Mach stem (and therefore the rayAM) is perpendicular to the wall in accordance 

with (5.2). .X ,,, =x, - y”?. Ynr = -7” (6, = l/z) (5.7) 

We obtain the conditions for the velocity component .y at the points R, lU from (5.1). 

v~= -. n1 (a" + p), YY = 0 (5.8) 

The boundary which closes the short-wave zone downstream coincides with the line 
of constant velocity 1-1 = p1 of solution (3.3) and contains the sonic line 8 = 11, for u =O. 

The solution p = 6 i- Z (6) then satisfies conditions (4.2) , 

Z (cll) = 0, Z’ (pi) = - 1 (5.9) 

6. The flow beyond the triple point in the short-wave zone is described by the equa- 

tion - U” $- ZZ’ + (2 + i)(Z’ + Z’/,) = 0 (6.1) 

whose solution must (by (5.6). (5. ‘I), (5.9)) satisfy the conditions 

Z (ccl) = 0, Z’ (pr) = - 1, Z(l/,) = ‘!z (6. 2) 

We can determine the range of permissible values of the initial stream parameters a, 
&f; by rewriting Eqs. (5.5). 

u*z-p*z=1, 1/1pL1=1+a*2-~*2 (6.3) 
where. 
a* =al v1/2 (no+ 11 MI, P*=P/ 1/'/2(no + i)Ml, 

-6 

Y' = T/ v1/2(no tl)-% (6.4) 

As we see from the first equation of (6.3). the initial parameters a and M,nust satisfy 
the condition a* >, 1 (6.5) 

The dependence of the angle of reflection o on 
the angle of incidence’o and on the intensity Ml 
is given by the formula 

0’ = ‘/$r - ]/(1/$X - o)Z- r/2 (no + 1) Ml (6.6) 

In Fig.2 we have a comparison of computations 
using formula (6.6) in the case of low-intensity shock 

waves (6 = 0.9, 5=0:8, I; = poIpl = (1 +nou&‘) 
with the results of the triple-shock (i) and double- 
shock (2) theories [l. 63 and with the experimental 

data of various authors @, 3,4]. 
In order to calculate the angle of inclination h 

of the Mach wave (or, which is equivalent, the angle 
of departure y) of the triple point from the wall) we 
must add an additional relation for determining p1 
to the existing conditions (6.3). This relation can 
be obtained by using the solution 2 = 2 (6) of Eq. 

(6.1). 

cd 

80 

70 

4i7 5u 60 70% 

Fig. 2 

Let us substitute the solution p = 6 + Z (6) into 

differential equations (5.2) describing the fronts 
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d6 --- 
(yy- 7/2~--k+fl)~ d$L - -r/as - I” (6.7) 

and integrate these equations plotting the fronts of the reflected wave and Mach wave 
from the points R and M, respectively, to the limiting intersection point S on the ray OA. 

Denoting the coordinate of the limit point S by 8* , we arrive at the expressions 

We note that both integrals in (6.8) are ~nvergent despite the singularities at the 
lower and upper ‘limits in the expressions for p* and y* , respectively. 

From now on we shall assume that h and p1 (M, and’&fJ are given and use Eqs.(6.3), 
(6.8) to determine a*, Be, y*. 

7. The solutions of differential equation (6.1) satisfying conditions (6.2) were found 
by numerical integration on a computer for several fixed values of the parameters i, (0, 
6.61, 1.0) and p1 (0.45,0.40,0.33,0.25,0.20., 01. 

A typical pattern of integral curves .&Z(a) and of the corresponding velocities u=p (6) 
appears in Fig. 3 (pl = 0.25, h= 0, 0.01, 1.4). 

We see that considerable variation of the velo- 
city (pressure, density, temperature) occurs in 
the short- wave zone for various h # 0, These 
variations are all the more marked the smaller 
the parameter k characterizing viscosity and 

thermal conductivity. 

Fig. 3 

In the limiting case as h -t 0 the integral 

curves approach the vertex of the angle without 

limit. and then veer off sharply. The solution 

Fig, 4 Fig. 5 

of Eq. (6.1) for h + 0 differs from the solution for h = 0 of the corresponding second- 
order equation for which the first and second, but not the third, conditions of (6.2) are 
fulfilled. This is why the ideal-gas model can be used for flows such that a* > 1. 

Another feature of the solutions consists in the fact that as pr tends to * for any h. , 
the short-wave zone wntracts to a point on the wall surface ; the reflected wave front 
(which is the sonic line in this case) emerges from the wall at this point. A similar flow 
pattern arises in the case of an ideal gas (a* < 2) as a* -+ 1 (e. g. see [16]). This leads 
us to suppose that as a* -4 in our case the flow assumes a character typical of a nonvis- 

cous gas. 
Making use of solution of (6.1) and expressions (6.3),(6.8), we can find the angle of 
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inclination y* of the Mach wave. Figure 5 shows the angle Y* as a function of a* for vari- 

ous h: These curves indicate that for h # 0 and a* > 1 the angle y assumes small (see 
(6.4) ), but nevertheless nonzero, values. 

As h + 0 for all s different from */z (Figs. 3 and 4) the solution of Eq. (6.1) tends to 
the limiting form ,Z = - 6 +pL1. Computation of integrals (6.8) then yields the relations 

Substituting results (7.1) into expressions (6.3) and eliminating a*, we find that 6*=l/~ 
and v* = 0. Thus, in the limiting case h -+ 0 the angle 
y + 0; and, by the second expression of (6.3), the maxi- 
mum relative express pressure at the wall is given by the 

M,/M1=i/pl=l+aft (7.2) 

The value of M, / M, as given by formula (7.2) is maxi- 
mum for all possible values of I for a fixed a*. 

The computer curves y* =- y* (a*) in Fig. 5 can be 

Fig. 6 

used to find the function y = y (a) for a 
given intensity Ml; the curve 7+ = T* (c*) 
for A=0 coincides with the a*-axis . 
This makes it easy to use formulas (6.3), 

(6.4).(2.1),(2.2) to find the values of? 
and 1 for given a and P1 . 

Finally, the solution p = 6 + 2 (6) 
enables us to use the condition of nonvor- 
ticity py = vg of flow (2.3) to find the 
transverse velocity component Y satisfy- 
ing conditions (5.8) of preservation of the 
tangential velocity components with pas- 

sage through the wave fronts, 

y=_ h@” +P”) 
P” +‘r” w f-f”) (7.3) 

Figure 6 shows the distribution of the equivelocity lines (isobars) in the flow region 
beyond the shock fronts in the moving coordinate system X, Y for h = 1, . PI = ll3. 
The shock fronts RSand MS were constructed from the points R and M to their meet- 
ing point s on the basis of the results of numerical integration of Eqs. (6.7) under con- 

ditions (5.6). (5.7), (6.2). 
Since (by virtue of (6.5)) the above flow model is valid for all a* > 1, increases in 

the relative excess pressure MO / M1 at the wall with increasing a* must, by (6.3), ulti- 

mately alter the qualitative structure of the stream (i.e. they must bring about a tran- 
sition to regular reflection, which is possible for a* > 2 in the case of an ideal gas). 

The author is grateful to S. V. Fal’kovich for his suggestions and comments on the 
present study. 
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It has been assumed until now that Papkovich [l, 21 was the first author to derive the 
generalized orthogonality relation and to pose the problem of simultaneous expansion 
of two independent functions in series in homogeneous solutions. This problem has been 
dealt with within the framework of the plane problem of elasticity theory by Grinberg 
[3], Prokopov [4], Vorovich and Koval’chuk 153, and by several foreign authors whose stu- 
dies are summarized in survey [6]. 

However, as was recently discovered, Papkovich’s paper [l] gave impetus to studies of 
a problem whose history dates back to a variant of the tree-dime~ional problem of the 
theory of elasticity. We are referring to a paper by Schiff [8] (1883) which contains a 


